Trắc nghiệm Toán cao cấp C1 Trường Đại học Công nghệ Sài Gòn

Năm thi: 2024
Môn học: Toán Cao Cấp C1
Trường: Đại học Công nghệ Sài Gòn (STU)
Người ra đề: ThS. Lê Ngọc Hưng
Hình thức thi: Trắc nghiệm
Loại đề thi: Đề ôn tập tổng hợp
Độ khó: Trung bình
Thời gian thi: 50 Phút
Số lượng câu hỏi: 30 Câu
Đối tượng thi: Sinh viên khối Kỹ thuật, Công nghệ thông tin, Quản trị kinh doanh và Tài chính
Năm thi: 2024
Môn học: Toán Cao Cấp C1
Trường: Đại học Công nghệ Sài Gòn (STU)
Người ra đề: ThS. Lê Ngọc Hưng
Hình thức thi: Trắc nghiệm
Loại đề thi: Đề ôn tập tổng hợp
Độ khó: Trung bình
Thời gian thi: 50 Phút
Số lượng câu hỏi: 30 Câu
Đối tượng thi: Sinh viên khối Kỹ thuật, Công nghệ thông tin, Quản trị kinh doanh và Tài chính
Làm bài thi

Mục Lục

Trắc Nghiệm Toán Cao Cấp C1 Trường Đại Học Công Nghệ Sài Gòn là bộ đề trắc nghiệm học phần Toán cao cấp, môn học nền tảng dành cho sinh viên các ngành Kỹ thuật, Công nghệ thông tin, Quản trị kinh doanh và Tài chính tại Trường Đại học Công nghệ Sài Gòn (STU). Đề ôn tập này được biên soạn bởi ThS. Lê Ngọc Hưng – giảng viên Khoa Khoa học Cơ bản – vào năm 2024, bao gồm đầy đủ các chương từ 1 đến 7: giới hạn – đạo hàm, tích phân, ma trận – định thức, không gian vector, hàm nhiều biến, phương trình vi phân và phép biến đổi Laplace. Các câu hỏi trắc nghiệm được thiết kế sát nội dung giảng dạy, giúp sinh viên hệ thống hóa kiến thức và luyện tập kỹ năng giải nhanh.

Trên nền tảng dethitracnghiem.vn, sinh viên có thể truy cập và luyện tập Trắc Nghiệm Toán Cao Cấp C1 Trường Đại Học Công Nghệ Sài Gòn với hệ thống đề thi phân loại rõ ràng theo từng chương và cấp độ khó. Mỗi câu hỏi đều đi kèm lời giải chi tiết và phân tích hướng tiếp cận, giúp người học hiểu sâu và áp dụng hiệu quả vào bài toán thực tiễn. Giao diện thân thiện, cùng các tính năng như lưu kết quả, theo dõi tiến độ học tập và biểu đồ phân tích hiệu suất là công cụ đắc lực giúp sinh viên STU tự tin bước vào kỳ thi giữa kỳ và cuối kỳ môn Toán cao cấp C1.

Trắc nghiệm Toán cao cấp C1 Trường Đại học Công nghệ Sài Gòn

Câu 1: Tìm giới hạn \( L = \lim_{x \to 1} \dfrac{x^3 – 1}{x – 1} \).
A. 1
B. 2
C. 3
D. 0

Câu 2: Tìm đạo hàm của hàm số \( y = 5x^4 – 3x^2 + 2x – 9 \).
A. \( y’ = 20x^3 – 6x \)
B. \( y’ = 20x^3 – 6x + 2 \)
C. \( y’ = 4x^3 – 2x + 2 \)
D. \( y’ = 20x^3 – 3x + 2 \)

Câu 3: Tính tích phân \( I = \int (\cos x – 2x) dx \).
A. \( I = -\sin x – x^2 + C \)
B. \( I = \sin x – x^2 + C \)
C. \( I = \sin x – 2 + C \)
D. \( I = -\sin x – 2x^2 + C \)

Câu 4: Chuỗi hình học \( \sum_{n=0}^\infty \left(\dfrac{1}{2}\right)^n \) có tổng bằng:
A. 1/2
B. 1
C. 2
D. Chuỗi phân kỳ

Câu 5: Tìm nghiệm tổng quát của phương trình vi phân \( y’ = 5y \).
A. \( y = Ce^{-5x} \)
B. \( y = Ce^{5x} \)
C. \( y = 5x+C \)
D. \( y = x^5+C \)

Câu 6: Tìm giới hạn \( L = \lim_{x \to 0} \dfrac{\sin(3x)}{\sin(5x)} \).
A. 1
B. 0
C. 3/5
D. 5/3

Câu 7: Tìm cực trị của hàm số \( y = x^2 – 10x + 15 \).
A. Đạt cực đại tại x = 5
B. Đạt cực tiểu tại x = 5
C. Đạt cực tiểu tại x = 10
D. Không có cực trị

Câu 8: Tính tích phân \( I = \int_0^1 (2x+1) dx \).
A. 1
B. 2
C. 3
D. 0

Câu 9: Chuỗi nào sau đây phân kỳ?
A. \( \sum_{n=1}^\infty \dfrac{1}{n^2} \)
B. \( \sum_{n=1}^\infty \dfrac{2n}{n+1} \)
C. \( \sum_{n=1}^\infty \left(\dfrac{1}{2}\right)^n \)
D. \( \sum_{n=1}^\infty \dfrac{(-1)^n}{n} \)

Câu 10: Tìm nghiệm tổng quát của phương trình \( y” – 6y’ + 5y = 0 \).
A. \( y = C_1 e^{-x} + C_2 e^{-5x} \)
B. \( y = C_1 e^x + C_2 e^{5x} \)
C. \( y = C_1 e^{-x} + C_2 e^{5x} \)
D. \( y = (C_1 + C_2 x) e^x \)

Câu 11: Cho hàm số \( f(x) = \begin{cases} x^2+2 & \text{khi } x \ge 1 \\ 2x+1 & \text{khi } x < 1 \end{cases} \). Giá trị của \( \lim_{x \to 1} f(x) \) là:
A. 3
B. 2
C. 1
D. Không tồn tại

Câu 12: Tìm đạo hàm của hàm số \( y = e^{x^2} \).
A. \( y’ = e^{x^2} \)
B. \( y’ = 2x e^{x^2} \)
C. \( y’ = x^2 e^{x^2-1} \)
D. \( y’ = e^{2x} \)

Câu 13: Tính tích phân \( I = \int x \cos x dx \).
A. \( x\sin x – \cos x + C \)
B. \( x\sin x + \cos x + C \)
C. \( -x\sin x + \cos x + C \)
D. \( \dfrac{x^2}{2} \cos x + C \)

Câu 14: Xét sự hội tụ của chuỗi \( \sum_{n=1}^\infty \dfrac{1}{n\sqrt{n}} \).
A. Hội tụ
B. Phân kỳ
C. Bán hội tụ
D. Không xác định

Câu 15: Tìm nghiệm của phương trình vi phân \( y’ = 2 \) với điều kiện \( y(1) = 3 \).
A. \( y = 2x \)
B. \( y = 2x + 1 \)
C. \( y = 2x+3 \)
D. \( y = 3 \)

Câu 16: Tìm giới hạn \( L = \lim_{x \to \infty} \dfrac{x^3+1}{2x^3-x^2} \).
A. 1
B. 1/2
C. 0
D. \( \infty \)

Câu 17: Hàm số \( y = -x^3 + 3x^2 + 1 \) nghịch biến trên khoảng nào sau đây?
A. (0, 2)
B. \( (-\infty, 0) \)
C. \( (2, +\infty) \)
D. \( (-\infty, 0) \) và \( (2, +\infty) \)

Câu 18: Tính diện tích hình phẳng giới hạn bởi đường cong \( y = \sqrt{x} \), trục Ox, \( x=0 \) và \( x=4 \).
A. 8
B. 16/3
C. 4
D. 8/3

Câu 19: Tìm bán kính hội tụ của chuỗi lũy thừa \( \sum_{n=0}^\infty \dfrac{x^n}{n!} \).
A. R = 0
B. R = 1
C. R = \( \infty \)
D. R = e

Câu 20: Tìm nghiệm tổng quát của phương trình \( y” + y = 0 \).
A. \( y = C_1 e^{x} + C_2 e^{-x} \)
B. \( y = C_1 \cos(x) + C_2 \sin(x) \)
C. \( y = (C_1+C_2x)e^{x} \)
D. \( y = (C_1+C_2x)\cos(x) \)

Câu 21: Tìm đạo hàm cấp hai của hàm số \( y = \ln x \).
A. \( y” = 1/x \)
B. \( y” = -1/x^2 \)
C. \( y” = -1/x \)
D. \( y” = 2/x^3 \)

Câu 22: Tính tích phân \( \int \dfrac{dx}{x-3} \).
A. \( -\dfrac{1}{(x-3)^2} + C \)
B. \( \ln|x-3| + C \)
C. \( \ln(x-3)^2 + C \)
D. \( \arctan x + C \)

Câu 23: Chuỗi \( \sum_{n=1}^\infty \dfrac{(-1)^{n}}{n} \) là chuỗi:
A. Hội tụ tuyệt đối
B. Bán hội tụ
C. Phân kỳ
D. Không xác định

Câu 24: Tìm nghiệm tổng quát của phương trình \( y” – 2y’ + y = 0 \).
A. \( y = C_1 e^{-x} + C_2 e^{x} \)
B. \( y = (C_1 + C_2 x)e^{x} \)
C. \( y = e^{x}(C_1 \cos x + C_2 \sin x) \)
D. \( y = C_1 e^{x} \)

Câu 25: Tìm hệ số góc của tiếp tuyến với đồ thị hàm số \( y=x^2-3x \) tại điểm có hoành độ x=1.
A. 1
B. -1
C. 2
D. -2

Câu 26: Khai triển Maclaurin của hàm số \( f(x) = e^{2x} \) đến số hạng chứa \( x^2 \) là:
A. \( 1 + x + x^2 \)
B. \( 1 + 2x + 4x^2 \)
C. \( 1 + 2x + 2x^2 \)
D. \( 1 + 2x + x^2 \)

Câu 27: Tính tích phân suy rộng \( I = \int_2^{+\infty} \dfrac{dx}{x^2} \).
A. 1
B. 1/2
C. 2
D. Phân kỳ

Câu 28: Tìm đạo hàm \( y’ \) của hàm số \( y = \sin(2x+1) \).
A. \( y’ = \cos(2x+1) \)
B. \( y’ = 2\cos(2x+1) \)
C. \( y’ = -2\cos(2x+1) \)
D. \( y’ = \cos(2) \)

Câu 29: Phương trình vi phân \( y’ + 2y = e^x \) là phương trình:
A. Tách biến
B. Đẳng cấp
C. Tuyến tính cấp 1
D. Toàn phần

Câu 30: Tính tích phân \( \int_0^1 \dfrac{dx}{\sqrt{1-x^2}} \).
A. \( \pi \)
B. \( \pi/2 \)
C. \( \pi/4 \)
D. 1

×

Bạn ơi!!! Để xem được kết quả
bạn vui lòng làm nhiệm vụ nhỏ xíu này nha

LƯU Ý: Không sử dụng VPN hoặc 1.1.1.1 khi vượt link

Bước 1: Mở tab mới, truy cập Google.com

Bước 2: Tìm kiếm từ khóa: Từ khóa

Bước 3: Trong kết quả tìm kiếm Google, hãy tìm website giống dưới hình:

(Nếu trang 1 không có hãy tìm ở trang 2, 3, 4... nhé )

Bước 4: Cuộn xuống cuối bài viết rồi bấm vào nút GIỐNG HÌNH DƯỚI và chờ 1 lát để lấy mã: